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Multivariate Cryptography

MPKC: Multivariate (Quadratic) Public Key Cryptosystem
Public Key: System of nonlinear multivariate equations
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Security

The security of multivariate schemes is based on the

Problem MQ: Given m multivariate quadratic polynomials p(1), . . . , p(m),
find a vector w = (w1, . . . ,wn) such that p(1)(w) = . . . = p(m)(w) = 0.

NP hard
believed to be hard on average (even for quantum conputers):

suppose we have a probabilistic Turing Machine T and a
subexponential function η, T terminates with an answer to a random
MQ(n,m = an,Fq) instance in time η(n) with probability negl(n).
higher order versions (MP for Multivariate Polynomials or PoSSo for
Polynomial System Solving) clearly no less hard

However usually no direct reduction to MQ !! There are exceptions:
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Identification Scheme of Sakumoto et al and MQDSS

An example 5-pass ID scheme depending only on MQ
P be a set of random MQ polynomials
Its “polar” form DP(x, y) := P(x + y)− P(x)− P(y)− P(0)
P(s) = p is the public key, s is the secret.
Peter picks and commits random (r0, t0, e0), sets r1 = s− r0 and
commits (r1,DP(t0, r1) + e0).
Vera sends random α,
Peter sets and sends t1 := αr0 − t0, e1 := αP(r0)− e0.
Vera sends challenge Ch, Peter sends rCh.
Vera checks the commit of either (r0, αr0 − t1, αP(r0)− e1) or
(r1, α(p− P(r1))− DP(t1, r1)− e1).

The Fiat-Shamir transform of this ID scheme is the MQDSS scheme.
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Bipolar Construction
Easily invertible quadratic map Q : Fn → Fm

Two invertible linear maps T (: Fm → Fm) and S(: Fn → Fn)
Public key: P = T ◦ Q ◦ S supposed to look random
Private key: S, Q, T allows to invert the public key

Encryption Schemes (m ≥ n)
Triangular schemes, ZHFE (broken)
PMI+, IPHFE+
Simple Matrix (not highly thought of)

Signature Schemes (m ≤ n)
Unbalanced Oil and Vinegar

I Rainbow (TTS)
HFEv- (QUARTZ/Gui)
pFLASH
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NIST Candidates

Digital Signature Schemes (4 into second round)
Transformed Zero-Knowledge: MQDSS
HFEv-: GUI, GeMSS, DualModeMS
Small Field: Rainbow, L(ifted)UOV, HiMQ3 (a version of TTS)

Encryption Schemes
SRTPI (broken)
DME (dubious)
CFPKM (Polly Cracker)
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Workflow

Decryption / Signature Generation

z ∈ Fm -T −1
y ∈ Fm -Q−1

x ∈ Fn -S−1
w ∈ Fn

6

P

Encryption / Signature Verification
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Isomorphism of Polynomials

Due to the bipolar construction, the security of MPKCs is also based on
the

Problem EIP (Extended Isomorphism of Polynomials): Given the public
key P of a multivariate public key cryptosystem, find affine maps S̄ and T̄
as well as quadratic map Q̄ in class C such that P = T̄ ◦ Q̄ ◦ S̄.

⇒ Hardness of problem depends much on the structure of the central map
⇒ Often EIP is really (a not so hard) MinRank
⇒ In general, not much is known about the complexity
⇒ Security analysis of multivariate schemes is a hard task
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Generic (Direct) Attacks
Try to solve the public equation P(w) = z as an instance of the
MQ-Problem, all algorithms have exponential running time (for m ≈ n)

Known Best Generic Algorithms
For larger q, FXL (“Hybridized XL” can Groverize)
For q = 2, smart enumerative methods

For q = 2, Joux-Vitse’s XL-with-enumeration Variant.

Complexity of Direct Attacks
How many equations are needed to meet given levels of security?

security number of equations
level (bit) F2 * F16 F31 F256

80 88 30 28 26
100 110 39 36 33
128 140 51 48 43
192 208 80 75 68
256 280 110 103 93

* depending on how we model the Joux-Vitse algorithm
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XL Algorithm (Lazard, 1983; CKPS, 1999)

Given: nonlinear polynomials f1, . . . , fm of degree d
1 eXtend multiply each polynomial f1, . . . , fm by every monomial of

degree ≤ D − d
2 Linearize: Apply (sparse) linear algebra to solve the extended system

Complexity = 3 ·
(

n + dXL
dXL

)2

·
(

n
d

)
(for larger q)

or
2 or Linearize and use an improved XL: Many variants. . .
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XL Variants

FXL – XL with k variables guessed or “hybridized”
if with k initial guesses / fixing / ”hybridization”:

Complexity = min
k

3qk ·
(

n − k + dXL
dXL

)2

·
(

n − k
d

)
.

[generic method with the best asymptotic multiplicative complexity].

XL2 – simplified F4
1 eXtend: multiply each polynomial f1, . . . , fm by monomials, up to

total degree ≤ D
2 Linearize: Apply linear algebra to eliminate top level monomials
3 Multiply degree D − 1 equations by variables, Eliminate Again.
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More Advanced Gröbner Bases Algorithms
find a “nice” basis of the ideal 〈f1, . . . , fm〉
first studied by B. Buchberger
later improved by Faugére et al. (F4, F5)
With linear algebra constant 2 < ω ≤ 3.

Complexity(q,m, n) = O
((

n + dreg − 1
dreg

)ω)
(for larger q)

Can also be “Hybridized”:

Complexity(q,m, n) = mink qk · O
((

n − k + dreg − 1
dreg

)ω)

Runs at the same degree as XL2.

Do not blithely set ω = 2 here
Even if ω → 2, there is a huge constant factor which cannot be neglected.
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Remarks

Every cryptosystem can be represented as a set of nonlinear multivariate
equations

Direct attacks can be used in the cryptanalysis of other cryptographic
schemes (in particular block and stream ciphers)
The MQ (or PoSSo) Problem can be seen as one of the central
problems in cryptography

Post-Quantum-ness of MQ
A Grover attack against n-bit-input MQ takes 2 n

2 +1n3 time.
A Hybridized XL with Grover for enumeration on n boolean variables
and as many equations still takes 2(0.471+o(1))n in true (time-area) cost
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Features of Multivariate Cryptosystems

Advantages
resistant against attacks with quantum computers
reasonably fast
only simple arithmetic operations required
⇒ can be implemented on low cost devices
⇒ suitable for security solutions for the IoT
many practical signature schemes (UOV, Rainbow, HFEv-, . . . )
short signatures (e.g. 120 bit signatures for 80 bit security)

Disadvantages
large key sizes (public key size ∼ 10− 100 kB)
no security proofs
mainly restricted to digital signatures
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Big Field Schemes

Decryption / Signature Generation

z ∈ Fn - y ∈ Fn - x ∈ Fn - w ∈ Fn

6

P

T −1 Q̄−1 S−1

Encryption / Signature Verification

Y ∈ E X ∈ E-Q−1

6

φ

?

φ−1
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Extension Fields

Fq: finite field with q elements
g(X ) irreducible polynomial in F[X ] of degree n
⇒ Fqn ∼= F[X ]/〈g(X )〉 finite field with qn elements
isomorphism φ : Fn

q → Fqn , (a1, . . . , an) 7→
∑n

i=1 ai · X i−1

Addition in Fqn : Addition in Fq[X ]
Multiplication in Fqn : Multiplication in Fq[X ] modulo g(X )
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The Matsumoto-Imai Cryptosystem (1988) or C ∗
Fq : finite field of characteristic 2
degree n extension field E = Fqn

isomorphism φ : Fn
q → E

C∗ parameter θ ∈ N with
gcd(qθ + 1, qn − 1) = 1.

Key Generation
central map Q : E→ E, X 7→ Xqθ+1 ⇒ Q is bijective
choose 2 invertible linear or affine maps S, T : Fn → Fn

public key: P = T ◦ φ−1 ◦ Q ◦ φ ◦ S : Fn → Fn quadratic multivariate
map
use the extended Euclidian algorithm to compute h ∈ N with

h · θ ≡ 1 mod qn − 1

private key: S, T
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Linearization Attack against C ∗
Given public key P, z? ∈ Fn, find plaintext w? ∈ Fn, s.t. P(w?) = z?

Proposed by J. Patarin in 1995
Taking the qθ − 1 st power of Y = Xqθ+1 and multiplying with XY yields

X · Y qθ = Xq2θ · Y

⇒ bilinear equation in X and Y , hence, same in w and z
n∑

i=1

n∑
j=1

αijwizj +
n∑

i=1
βiwi +

n∑
j=1

γjzj + δ = 0. (?)

1 Compute N ≥ (n+1)·(n+2)
2 pairs (z(k)/w(k)) and substitute into (?).

2 Solve the resulting linear system for the coefficients αij , βi , γj and δ.
⇒ n bilinear equations in w1, . . . ,wn, z1, . . . , zn

3 Substitute z? into these bilinear equations and solve for w?.
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pFLASH: Prefixed C ∗−signature scheme
Natural restriction of Q to hyperplane = set coordinate to 0
Start from a C∗ scheme with Q(x) = x1+qθ with secret linear maps S and
T . Let r and s be two integers between 0 and n. Let T− be the
projection of T on the last r coordinates and S− be the restriction of S to
the first n − s coordinates. P = T− ◦ Q ◦ S− is the public key and S−1

and T−1 are the secret key. This is pFLASH(Fq,n − s,n − r).

Inversion
To find P−1(m) for m ∈ Fn−r

q , the legitimate user first pads m randomly
into vector m′ ∈ (F)n and compute T−1 ◦ Q−1 ◦ S−1(m′). Repeat until
this element has its last s coordinates to 0. Its n− s first coordinates are a
valid signature for m. When r > s, the process ends with probability 1 and
costs on average qs inversions of Q.

pFLASH Parameters at NIST Cat. I-II
Suggested pFLASH(F16,96-1,64) (146 kB pubkey, 6 kB prvkey).
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The HFE Cryptosystem
“ Hidden Field Equations”, proposed by Patarin in 1995
BigField Scheme, can be used both for encryption and signatures
finite field F, extension field E of degree n, isomorphism φ : Fn → E

Original HFE
central map Q : E→ E (not bijective, invert using Berlekamp
Algorithm).

Q(X ) =
qi +qj≤D∑

0≤i≤j
αijXqi +qj +

qi≤D∑
i=0

βi · Xqi + γ

⇒ Q̄ = φ−1 ◦ Q ◦ φ : Fn → Fn quadratic
degree bound D needed for efficient decryption / signature generation
linear maps S, T : Fn → Fn

public key: P = T ◦ Q̄ ◦ S : Fn → Fn

private key: S, Q, T
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MinRank Attack against HFE
Look in extension field E (Kipnis and Shamir [KS99])

the linear maps S and T relate to univariate maps
S?(X ) =

∑n−1
i=1 si · Xqi amd T ?(X ) =

∑n−1
i=1 ti · Xqi , with si , ti ∈ E.

the public key P? can be expressed as∑n−1
i=0

∑n−1
j=0 p?ijXqi +qj = X · P? · XT ,

Components of P? can be found by polynomial interpolation.
Solve MinRank problem over E.

No need to look in E (Bettale et al)
Perform the MinRank attack without recovering P? ⇒ HFE can be broken
by using a MinRank problem over the base field F.

ComplexityMinRank =
(

n + r
r

)ω

with 2 < ω ≤ 3 and r = blogq(D − 1)c+ 1.
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Direct Attacks

J-C Faugère solved HFE Challenge 1 (HFE over GF2, d = 96) in 2002
Empirically HFE systems can be solved much faster than random
Ding-Hodges Upper bound for dreg

dreg ≤
{ (q−1)·(r−1)

2 + 2 q even and r odd,
(q−1)·r

2 + 2 otherwise.
,

with r = blogq(D − 1)c+ 1.

⇒ Basic version of HFE is not secure

Variant Schemes
Encryption Schemes IPHFE+ (inefficient), ZHFE (broken).
Signature Schemes HFEv- (QUARTZ/GUI), MHFEv- (broken)
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HFEv-
finite field F, extension field E of degree n, isomorphism φ : Fn → E
central map Q : Fv × E→ E, where the βi and γ are affine.

Q(X ) =
qi +qj≤D∑

0≤i≤j
αijXqi +qj +

qi≤D∑
i=0

βi (v1, . . . , vv ) · Xqi + γ(v1, . . . , vv )

⇒ Q̄ = φ−1 ◦ Q ◦ (φ× idv ) quadratic map: Fn+v → Fn

linear maps T : Fn → Fn−a and S : Fn+v → Fn+v of maximal rank
public key: P = T ◦ Q̄ ◦ S : Fn+v → Fn−a

private key: S, Q, T

Signing Message digest z
1 Compute y = T −1(z) ∈ Fn and Y = φ(y) ∈ E
2 Choose random values for the vinegar variables v1, . . . , vv

Solve Qv1,...,vv (X ) = Y over E
Can Repeat first step of Berlekamp until there is a unique solution.

3 Compute x = φ−1(X ) ∈ Fn and signature w = S−1(x||v1|| . . . ||vv ).
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Security vs. Efficiency
Main Attacks

MinRank Attack Rank(F ) = r + a + v

⇒ ComplMinRank =
(

n + r + a + v
r + a + v

)ω
Direct attack [DY13]

dreg ≤
{ (q−1)·(r+a+v−1)

2 + 2 q even and r + a odd,
(q−1)·(r+a+v)

2 + 2 otherwise.
,

with r = blogq(D − 1)c+ 1 and 2 < ω ≤ 3.

Efficiency
Rate determining step: solving X from a univariate equation of degree D.

ComplexityBerlekamp = O(D3 + n · D2)
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How to define a HFEv- like scheme over F2 [PCY+15]?
Collision Resistance of the hash function
To cover a hash value of k bit, the public key of a pure HFEv- scheme has
to contain at least k equations over F2. ⇒ public key > k3/2 bits

security level 80 100 128 192 256
# equations 100 200 256 384 512

pubkey size (kB) >250 > 500 > 1000 > 3000 > 8000

QUARTZ
standardized by Courtois, Patarin in 2002
HFEv− with F = GF(2), n = 103, D = 129, a = 3 and v = 4
public key: quadratic map P = T ◦ Q ◦ S : GF(2)107 → GF(2)100

Prevent birthday attacks ⇒ Generate four HFEv− signatures
(for w, H(w|00), H(w|01) and H(w|11))

Combine them to a single signature of length
(n − a) + 4 · (a + v) = 128 bit
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GeMSS, GUI (Generalized QUARTZ) Signature Generation

Input: HFEv- private key (S, Q, T ) message d, repetition factor k
Output: signature σ ∈ F2

(n−a)+k(a+v)

1: h← Hash(d)
2: S0 ← 0 ∈ GF(2)n−a

3: for i = 1 to k do
4: Di ← first n − a bits of h
5: (Si ,Xi )← HFEv−−1(Di ⊕ Si−1)
6: h← Hash(h)
7: end for
8: σ ← (Sk ||Xk || . . . ||X1)
9: return σ

Note that if any equation has zero (or more than 2 solutions for Gui), then
we discard those vinegars and try again.
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Signature Verification
Input: HFEv- public key P, message d, repetition factor k, signature

σ ∈ F2
(n−a)+k(a+v)

Output: TRUE or FALSE
1: h← Hash(d)
2: (Sk ,Xk , . . . ,X1)← σ
3: for i = 1 to k do
4: Di ← first n − a bits of h
5: h← Hash(h)
6: end for
7: for i = k − 1 to 0 do
8: Si ← P(Si+1||Xi+1)⊕ Di+1
9: end for

10: if S0 = 0 then
11: return TRUE
12: else
13: return FALSE
14: end if
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Parameters for HFEv- (GeMSS,GUI) over F2?
Parameters are set by the complexity of MinRank and direct attacks

For the complexity of the MinRank attack we have a concrete formula
For the direct attack, we only have an upper bound on dreg.

dreg ≤
{ (q−1)·(r+a+v−1)

2 + 2 q even and r + a odd,
(q−1)·(r+a+v)

2 + 2 otherwise.
(?)

Experiments show that these estimate for dreg is reasonably tight.

Parameter Choice of HFEv- over F2

Aggressive ⇒ Choose D as small as possible (GUI)
D = 5 ⇒ r = blog2(D − 1)c+ 1 = 3
D = 9 ⇒ r = blog2(D − 1)c+ 1 = 4
D = 17 ⇒ r = blog2(D − 1)c+ 1 = 5

Increase a and v ( 0 ≤ v − a ≤ 1) to reach the required security level.
Conservate choice: choose D = 513 and n as needed (GeMSS).
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Quantum Attacks and Impact
A determined multivariate system of m equations over F2 can be solved
using 2m/2 · 2 ·m3 operations using a quantum computer.

This does not affect signatures in general because the hashes are
typically twice as wide as the design security.
Alas, this wipes out much of GUI’s gains.

⇒ very large public key size
security level 80 100 128 192 256

min # equations 117 155 208 332 457

Proposed Parameters (Signature includes 128-bit salt)
NIST Category Parameters public key private key signature

level (bit) Fq, n,D, a, v , k size (kB) size (kB) size (bit)
I Gui (F2,184,33,16,16,2) 416.3 19.1 360

III Gui (F2,312,129,24,20,2) 1,955.1 59.3 504
V Gui (F2,448,513,32,28,2) 5,789.2 155.9 664
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V GeMSS (F2,354,513,30,33,4) 3,604 83.7 832
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HFEv- - Summary

short signatures
security well respected
conflict between security and efficiency
restricted to very small fields, hence very large keys
109M cycles keygen, 676M cycles signing, about 107k cycles verifying
at NIST Cat. 1.
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Oil-Vinegar Polynomials [Patarin 1997]
Let F be a (finite) field. For o, v ∈ N set n = o + v and define

p(x1, . . . , xn) =
v∑

i=1

v∑
j=i

αij · xi · xj︸ ︷︷ ︸
v×v terms

+
v∑

i=1

n∑
j=v+1

βij · xi · xj︸ ︷︷ ︸
v×o terms

+
n∑

i=1
γi · xi︸ ︷︷ ︸

linear terms

+δ

x1, . . . , xv : Vinegar variables xv+1, . . . , xn: Oil variables, no o × o terms.
If we randomly set x1, . . . , xv , result is linear in xv+1, . . . , xn

(Unbalanced) Oil-Vinegar matrix
p̃ the homogeneous quadratic part of p(x1, . . . , xn) can be written as
quadratic form p̃(x) = xT ·M · x with

M =
(
∗v×v ∗o×v
∗v×o 0o×o

)

where ∗ denotes arbitrary entries subject to symmetry.
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Kipnis-Shamir OV attack when o = v
O := {x ∈ Fn : x1 = . . . = xv = 0} “Oilspace”
V := {x ∈ Fn : xv+1 = . . . = xn = 0} “Vinegarspace”

Let E ,F be invertible “OV-matrices”, i.e. E ,F =
(
? ?
? 0

)
Then

E · O ⊂ V. Since the two has the same rank, equality holds, so
(F−1 · E ) · O = O, i.e. O is an invariant subspace of F−1 · E .

Common Subspaces
Let Hi be the matrix representing the homogeneous quadratic part of the
i-th public polynomial. Then we have Hi = ST · Ei · S, i.e. S−1(O) is an
invariant subspace of the matrix (H−1

j · Hi ), and we find S−1.

tl;dr Summary of the Standard UOV Attack
for v ≤ o, breaks the balanced OV scheme in polynomial time.
For v > o the complexity of the attack is about qv−o · o4.

⇒ Choose v ≈ 2 · o (unbalanced Oil and Vinegar (UOV)) [KP99]
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Other Attacks
Collision Attack: o ≥ 22`

log2(q) for `-bit security.
Direct Attack: Try to solve the public equation P(w) = z as an
instance of the MQ-Problem. The public systems of UOV behave
much like random systems, but they are highly underdetermined
(n = 3 ·m)

Result [Thomae]: A multivariate system of m equations in n = ω ·m
variables can be solved in the same time as a determined system of
m − bωc+ 1 equations.

⇒ m has to be increased by 2.

UOV-Reconciliation attack: Try to find a linear transformation S
(“good keys”) which transforms the public matrices Hi into the form
of UOV matrices

(ST )−1 · Hi · S−1 =
(
? ?
? 0

)
, S =

(
1 ?
0 1

)
⇒ Each Zero-term yields a quadratic equation in the elements of S.
⇒ S can be recovered by solving several MQ systems (the hardest
with v variables, m equations if v < m).
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Summary of UOV
Safe Parameters for UOV(F, o, v)

security public key private key hash size signature
level (bit) scheme size (kB) size (kB) (bit) (bit)

80 UOV(F16,40,80) 144.2 135.2 160 480
UOV(F256,27,54) 89.8 86.2 216 648

100 UOV(F16,50,100) 280.2 260.1 200 600
UOV(F256, 34,68) 177.8 168.3 272 816

128 UOV(F16,64,128) 585.1 538.1 256 768
UOV(F256,45,90) 409.4 381.8 360 1,080

192 UOV(F16,96,192) 1,964.3 1,786.7 384 1,152
UOV(F256,69,138) 1,464.6 1,344.0 552 1,656

256 UOV(F16,128,256) 4,644.1 4,200.3 512 1,536
UOV(F256,93,186) 3,572.9 3,252.2 744 2,232

What we know today about UOV
unbroken since 1999 ⇒ high confidence in security
not the fastest multivariate scheme
very large keys, (comparably) large signatures
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Rainbow Digital Signature

Ding and Schmidt, 2004
Patented by Ding (May have had patent by T.-T. Moh, expired)
TTS is its variant with sparse central map
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Rainbow Digital Signature
Ding and Schmidt, 2004

Finite field F, integers 0 < v1 < · · · < vu < vu+1 = n.
Set Vi = {1, . . . , vi}, Oi = {vi + 1, . . . , vi+1}, oi = vi+1 − vi .
Central map Q consists of m = n − v1 polynomials f v1+1, . . . , f (n) of
the form

f (k) =
∑

i ,j∈V`

α
(k)
ij xixj +

∑
i∈V`,j∈O`

β
(k)
ij xixj +

∑
i∈V`∪O`

γ
(k)
i xi + δ(k),

with coefficients α(k)
ij , β(k)

ij , γ(k)
i and δ(k) randomly chosen from F

and ` being the only integer such that k ∈ O`.
Choose randomly two affine (or linear) transformations T : Fm → Fm

and S : Fn → Fn.
public key: P = T ◦ Q ◦ S : Fn → Fm

private key: T , Q, S
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Idea of Rainbow
Inversion of the central map

Invert the single UOV layers recursively.
Use the variables of the i-th layer as Vinegars of the i + 1-th layer.

Illustration: Rainbow with two layers

F (k) =

v1 v2 n

v1

v2

n

F (k) =

v1 v2 n

v1

v2

n
v1 + 1 ≤ k ≤ v2 v2 + 1 ≤ k ≤ n

Signature Generation from message d
1 Use a hash function H : {0, 1} → Fm to compute z = H(d) ∈ Fm

2 Compute y = T −1(z) ∈ Fm.
3 Compute a pre-image x ∈ Fn of y under the central map Q
4 Compute the signature w ∈ Fn by w = S−1(x).

Signature Verification from message d , signature z ∈ Fn

1 Compute z = H(d).
2 Compute z′ = P(w).

Accept the signature z⇔ w′ = w.
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Security

Rainbow is an extension of UOV
⇒ All attacks against UOV can be used against Rainbow, too.

Additional structure of the central map allows several new attacks
MinRank Attack: Look for linear combinations of the matrices Hi of
low rank (complexity qv1o1(m3/3 + mn2)).
HighRank Attack: Look for the linear representation of the variables
appearing the lowest number of times in the central polynomials.
(Complexity qou ou(n3/3 + oun2), can Groverize)
Rainbow-Band-Separation Attack: Variant of the
UOV-Reconciliation Attack using the additional Rainbow structure

Choosing Parameter Selection for Rainbow is interesting
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MinRank Attack

Minors Version
Set all rank r + 1 minors of

∑
i αiHi to 0.

Kernel Vector Guessing Version
Guess a vector v, let

∑
i αiHiv = 0, hope to find a non-trivial solution.

(If m > n, guess dm
n e vectors.)

Takes qr (m3/3 + mn2) time to find a rank r kernel.

Accumulation of Kernels and Effective Rank
In the first stage of Rainbow, there are o1 = v2 − v1 equations and v2
variables. The rank should be v2. But if your guess corresponds to
x1 = x2 = · · · = xv1 = 0, then about 1/q of the time we find a kernel.
The easy way to see this is that there are qo1−1 different kernels. We say
that “effectively the rank is v1 + 1”.
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Rainbow Band Separation

Extension to UOV reconciliation to use the special Rainbow form.

n variables, n + m − 1 quadratic equations
1 Let wi := w ′i − λiw ′n for i ≤ v , wi = w ′i for i > v . Evaluate z in w′.
2 Find m equations by letting all (w ′n)2 terms vanish; there are v of λi ’s.
3 Set all cross-terms involving w ′n in

z1 − σ(1)
1 zv+1 − σ(1)

2 zv+2 − · · · − σ(1)
o zm to be zero and find n − 1

more equations.
4 Solve m + n − 1 quadratic equations in o + v = n unknowns.
5 Repeat, e.g. next set w ′i := w ′′i − λiw ′′n−1 for i < v , and let every

(w ′′n−1)2 and w ′′n w ′′n−1 term be 0. Also set
z2 − σ(2)

1 zv+1 − σ(2)
2 zv+2 − · · · − σ(2)

o zm to have a zero second-to-last
column. [2m + n − 2 equations in n unknowns.]
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Rainbow - Summary

no weaknesses found since 2007
efficient (25.5kcycles verifying, 75.5kcycles signing at NIST Cat. 1)
suitable for low cost devices
shorter signatures and smaller key sizes than UOV

Parameters for Rainbow
NIST Security parameters public key private key hash size signature

Category F, v1, o1, o2 size (kB) size (kB) (bit) (bit)
I F16,32,32,32 148.5 97.9 256 512

III F256,68,36,36 703.9 525.2 576 1,248
V F256,92,48,48 1,683.3 1,244.4 768 1,632
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Thank you for Listening

That’s it Folks!
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